
THREETEN (JSR 310)

Grzegorz Borkowski

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

2 © Rule Financial 2012

JSR-310 and ThreeTen

The new Date and Time API in Java 8

Grzegorz Borkowski

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

3 © Rule Financial 2012

About me

Grzegorz Borkowski

For 8 years a Java developer

For 2 years working in Rule Financial as Lead Consultant and Java Focus Group

Leader

Rule Financial is a provider of IT and software services to the investment banking,

including top-10 global investment banks. We have offices in London, New York,

Toronto, Barcelona, Łódź and Poznań. In Łódź and Poznań, we currently hire more

than 200 developers, and we are still growing. See www.rulefinancial.com

Contact: grzegorzbor@gmail.com or grzegorz.borkowski@rulefinancial.com

http://www.rulefinancial.com/
mailto:grzegorzbor@gmail.com
mailto:grzegorz.borkowski@rulefinancial.com

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

4 © Rule Financial 2012

Agenda

Current date/time support in JDK, and its limitations

ISO-8601

What JSR-310 provides (with examples)

Machine time

Local dates

Years and months

Timezones

Durations

Q&A

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

5 © Rule Financial 2012

The current set in JDK

Basic set

java.util.Date

java.util.Calendar

JDBC

java.sql.Date

java.sql.Time

java.sql.Timestamp

Other

javax.xml.datatype.Duration/XmlGregorianCalendar

java.text.DateFormat

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

6 © Rule Financial 2012

Problems: limited modelling capabilities

How to model:

a date without a time component – e.g. 1 Mar 2012

time without a date – e.g. 11:00

time with vs without timezone – e.g. 11:00 vs 11:00 CEST

year-month – e.g. a payment list can be linked to "Oct 2012"

duration, e.g. marathon record "02:03:38"

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

7 © Rule Financial 2012

Problems: poor API design
and questionable implementation decisions

Date/Calendar/sql.* classes are mutable

Have methods which take no arguments but throw IllegalArgumentException

Months in Calendar are counted from 0 through 11

famous javadoc for Timestamp:

"Due to the differences between the java.sql.Timestamp class and the java.util.Date

class, it is recommended that code not view Timestamp values as an instance of

java.util.Date. The inheritance relationship between Timestamp and java.util.Date

really denotes implementation inheritance, and not type inheritance."

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

8 © Rule Financial 2012

Workarounds

Use String, e.g. “2012-03-01”

Use java.util.Date with "normalized" components – like java.sql.Date does

but if your timezone changes by one hour, your date can change by one day

also, in some timezones, during a time change, there can be no midnight

Write your own class

Use Joda Time, e.g. LocalDate

Integration problems (JDBC, JPA, XML etc)

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

9 © Rule Financial 2012

JSR-310 vs Joda Time

JSR-310 is a "better Joda Time"

Joda Time has some problems and design mistakes - see

http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html

Stephen Colebourne, creator of Joda, is the lead of JSR-310.

Joda is mature and stable, recommended for production usage. JSR-310 is not yet

stable enough.

Joda has two basic concepts: Instant and Partial. JSR-310 uses slightly different

approach, there is no such division.

http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html
http://blog.joda.org/2009/11/why-jsr-310-isn-joda-time_4941.html

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

10 © Rule Financial 2012

ISO-8601

An international standard covering the exchange of date and time-related data

Examples of data formats:

2012-10-22

2012-10-22 T16:48Z // "Z" means UTC/GMT

2012-10-22 T16:48:63.000+02:00

05:00-04:30

Time zone calculations:

12:00Z = 14:00+02:00 = 7:30-04:30

Note: human/locale representation vs machine/standard representation:

2012-10-22 T16:48+01:00 // as sent from/to webservice

22/10/2012 , 4:48 PM BST // as displayed in GUI

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

11 © Rule Financial 2012

What JSR-310 provides

Well designed, consistent, modern API

Five modules:

java.time – the main API

java.time.temporal – lower-level API for accessing the fields and units of date-time

java.time.zone – lower-level API to handle time-zones

java.time.format – printing and parsing date-time objects and strings

java.time.calendar – alternate calendar systems (Islamic, Japanese, Taiwan, Thai)

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

12 © Rule Financial 2012

JSR-310 design principles

No constructors, only factory methods

LocalDate firstMarch2012 = LocalDate.of(2012, 03, 01);

LocalDate firstMarch2013 = LocalDate.parse("2013-03-01");

Immutable classes

firstMarch2012.plusYears(3); // wrong – lost assignment!

System.out.println(firstMarch2012); // still 2012-03-01

Consistent method names

of(), parse(), plus(), minus(), with()

firstMarch2012.withYear(2015); // 2015-03-01

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

13 © Rule Financial 2012

JSR-310 - two models of time

Machine time

Computers treat time as a counter, based on some oscillator and some reference

point. Such time can be continuous or not.

Human time

Humans treat time as a set of predefined fields (year X, month Y, day Z, plus maybe

hour, minute, second).

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

14 © Rule Financial 2012

Machine time

java.time.Instant – a point on the time-line with nanosecond precision; a

reference point is 1 Jan 1970 ("unix epoch").

Can be used in logs, audits, etc.

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

15 © Rule Financial 2012

Machine time

java.time.Instant – a point on the time-line with nanosecond precision; a

reference point is 1 Jan 1970 ("unix epoch").

Can be used in logs, audits, etc.

Instant now = Instant.now();

Instant twoSecondsLater = now.plusSeconds(2);

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

16 © Rule Financial 2012

Local date and time

java.time.LocalDate – date without time and zone, e.g. 2007-10-31

java.time.LocalTime – time withouth date and zone, e.g. 10:15:30

java.time.LocalDateTime – date and time without zone,

e.g. 2007-10-31T10:15:30

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

17 © Rule Financial 2012

Local date and time

java.time.LocalDate – date without time and zone, e.g. 2007-10-31

java.time.LocalTime – time withouth date and zone, e.g. 10:15:30

java.time.LocalDateTime – date and time without zone,

e.g. 2007-10-31T10:15:30

LocalDate date = LocalDate.of(2007, 10, 31);

LocalTime time = LocalTime.of(10, 15);

LocalDateTime dateTime = LocalDateTime.of(date, time);

assertThat(dateTime.getHour(), equalTo(10));

//what if there is no such day?

LocalDate oneMonthLater = date.plusMonths(1);

assertThat(oneMonthLater.getDayOfMonth(), equalTo(30));

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

18 © Rule Financial 2012

Years, months

java.time.Year – pure year, e.g. 2007

java.time.Month – enum

java.time.YearMonth – e.g. 2007-10

java.time.MonthDay – October 31st

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

19 © Rule Financial 2012

Years, months

java.time.Year – pure year, e.g. 2007

java.time.Month – enum

java.time.YearMonth – e.g. 2007-10

java.time.MonthDay – October 31st

Year year = Year.of(2000);

YearMonth february = year.atMonth(Month.FEBRUARY);

if (year.isLeap()) {

 assertThat(february.lengthOfMonth(), equalTo(29));

} else {

 assertThat(february.lengthOfMonth(), equalTo(28));

}

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

20 © Rule Financial 2012

Timezones

javax.time.ZoneId – time zone identifier, e.g “Europe/Warsaw”

javax.time.ZoneOffset – subclass of ZoneId, simple offset against UTC (positive or

negative), e.g. +05:00, +01:00, -02:00, +04:30, Z, CEST, UTC, GMT

javax.time.ZonedDateTime - date with time with offset with time zone,

e.g. 2007-12-03T10:15:30+01:00[Europe/Warsaw]

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

21 © Rule Financial 2012

Timezones

javax.time.ZoneId – time zone identifier, e.g “Europe/Warsaw”

javax.time.ZoneOffset – subclass of ZoneId, simple offset against UTC (positive or

negative), e.g. +05:00, +01:00, -02:00, +04:30, Z, CEST, UTC, GMT

javax.time.ZonedDateTime - date with time with offset with time zone,

e.g. 2007-12-03T10:15:30+01:00[Europe/Warsaw]

ZoneId zonePL = ZoneId.of("Europe/Warsaw");

LocalDateTime localDateTime = LocalDateTime.of(2013, 3, 1, 12, 0);

ZonedDateTime firstDecemberMidday = ZonedDateTime.of(localDateTime, zonePL);

assertThat(firstDecemberMidday.getOffset().getId(), equalTo("+01:00"));

ZonedDateTime firstJuneMidday = firstDecemberMidday.withMonth(6);

assertThat(firstJuneMidday.getOffset().getId(), equalTo("+02:00"));

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

22 © Rule Financial 2012

Virtual clock abstraction

java.time.Clock – virtual clock, should be injected and used by all date/time-

related calculations; avoid using System.currentTimeMillis()

Different implementations available: can be bound to system clock, or to fixed time,

can tick with more granular precision, e.g. tick by one second

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

23 © Rule Financial 2012

Virtual clock abstraction

java.time.Clock – virtual clock, should be injected and used by all date/time-

related calculations; avoid using System.currentTimeMillis()

Different implementations available: can be bound to system clock, or to fixed time,

can tick with more granular precision, e.g. tick by one second

//bad:

LocalDateTime now = LocalDateTime.now();

//better:

@Inject Clock clock;

LocalDateTime now = LocalDateTime.now(clock);

//injection:

clock = Clock.systemUTC();

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

24 © Rule Financial 2012

Durations

java.time.Duration – duration in time units (seconds, millis, nanos)

basically, the difference between two Instances

can be positive or negative

java.time.Period – duration in date units (days, months, years)

useful for modelling calculations over months with different lenghts or over DST

changes, e.g. a day can have 23 or 25 hours if there is a time change

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

25 © Rule Financial 2012

Durations

java.time.Duration – duration in time units (seconds, millis, nanos)

basically, the difference between two Instances

can be positive or negative

java.time.Period – duration in date units (days, months, years)

useful for modelling calculations over months with different lenghts or over DST

changes, e.g. a day can have 23 or 25 hours if there is a time change

Duration timeBetween = Duration.between(timeStart, timeEnd);

Duration marathonRecord = Duration.ofHours(2).plusMinutes(3).plusSeconds(38);

Period oneWeek = Period.ofDays(7);

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

26 © Rule Financial 2012

Other classes

java.time.OffsetTime – time w/o date but with offset, e.g. 10:15:30+02:00

java.time.OffsetDateTime – date with time and offset, but no zone ID,

e.g. 2007-12-03T10:15:30+02:00

useful for interaction with systems that do not support storing zone ID, e.g.

databases or ISO-complient web services

java.time.format.DateTimeFormatter – date/time parser and formatter

java.time.zone.ZoneRules – keeps all the rules related to DST for given zone

java.time.zone.ZoneRulesProvider – can be used to query for all available zone

IDs

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

27 © Rule Financial 2012

Why proper date/time modelling is important

Use case: a timetracking system. A user in Poland entered a work time:

1st Oct 2012, 9:00-17:00

Now this user (or his/her manager) moves to different time zone (say NY time, which

is -04:00). What should they see?

 if modelled as LocalDateTime – no change, it's still 9-17

 if modelled as Instants – it's displayed in NY timezone as 3AM – 11AM

 if modelled as Offset/ZonedDateTime – possibly no change, 9-17, but with notice

"this is in Poland timezone"; or 3AM – 11M, with notice "converted to your local

time"

Also, be careful about conversions, e.g. how it gets translated to a database

and what if you relocate DB to a different timezone?

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

28 © Rule Financial 2012

Design problems

Date comparison logic

e.g. does 1:30+02:00 equals 2:30+03:00?

what about implementing Comparable – should it be consistent with equals?

example: BigDecimal

1.0 equals 1.00 returns false, but 1.0 compareTo 1.00 returns 0

Zones and offsets

offset is enough to identify the date precisely; but is not enough for

adding/removing durations (because of DST)

zone ID is enough, in most cases, to identify the offset for given date; but not

always, example:

2012-10-28T02:15+02:00[Europe/Warsaw]

2012-10-28T02:15+01:00[Europe/Warsaw] //one hour later

NO CONTENT IN THIS
LOGO 'EXCLUSION'

ZONE

ONLY MAIN AND
SECONDARY TITLES

IN THIS AREA

MAIN CONTENT
AREA

NO CONTENT IN THIS AREA

NO CONTENT IN
THIS AREA

NO CONTENT IN
THIS AREA

29 © Rule Financial 2012

Summary

JSR-310 – available in Java 8 this year

Backport available for Java 7

Dos and don'ts:

Don't use java.util.Date/Calendar! Use Joda Time (and in the future, use JSR-310)

Use proper classes to model concepts accurately – e.g. do not use date with

timezone (like java.util.Date) for modelling date of birth

Never use System.currentTimeMillis() inside business logic

Use ISO standard to format dates and times when exchanging them between

systems

