A
CLUXOFT

SOFTWARE IMAGINEERING
V PLATINIUM SPONSOR

Y o~ a ~ L C 1 Al A~ e »
Pawet Sidoryk

The most powerful open-source, distributed
W atabase yvou'll ever put into production

33E§'EGREE

13-15 March 2013

Conference for Java Masters Warsaw, Poland

Raspberry Pl Cluster running Riak

4 nodes running Riak, fully operational
Energy efficient: max 3.5 watts per node
Based on the ARM architecture

Very cheap

Not a production grade cluster :-)

The Agenda

—_— e e e
SROINSSCOTNY - =

—
COoNoGhrwN =

Riak: basic facts, main features

Objects and buckets

A demo: a classic distributed shopping cart
Data distribution

CAP theorem

Concurrency control: vector clocks, siblings
Tunable consistency

Operations on Riak with REST

Secondary Indexes (2i)

MapReduce in Riak

Riak Search

Riak Java Client

Conflict resolution with Java

Convergent Replicated Data Types
Wrap-up

Questions

Riak: Basic Facts

A distributed key-value NoSQL database
Based on Amazon Dynamo

Fault tolerant

No single point of failure

Peer-to-peer architecture

Easily scalable

Highly available

Eventually consistent (tunable consistency)
Written in Erlang with elements in C and
JavaScript

Riak: main features

e Data distribution and replication

Interfaces: REST-ful API, Protocol Buffers

e Client libraries: Java, Python, Perl, Erlang,
Ruby, PHP, .NET

e MapReduce

Riak Search (full text search)

e Secondary Indexes

Objects in Riak

Riak stores values as opaque binary objects.

The most convenient way of storing objects: JSON-
encoded objects, e.g. we have a "book" object:

{

"title": "The Prince",
"author": "Niccolo Machiavelli"

}

Objects are grouped into buckets. Objects in a bucket
share replication level, consistency parameters, storage
backend. Objects in a bucket do not have to be related to
themselves in any other way.

Demo: Distributed Shopping Cart

Bob
Data Source e Consistency Level
1127.0.0.1:10018 ¥} | Quorum ¥ |

Data Source
Reload Cart | Save Cart | [127.0.0.%10028 v)| Quorum ¥ |
_’/

Alice
Consistency Level
Reload Cart | Save Cart

Available Books
Title

Clean Code: A Handbook of Agile Software Craftsmanship &=

Distributed Systems: Concepts and Design
Emotional Intelligence

Freakonomics: A Rogue Economist Explores the Hidden
Side of Everything

Influence: Science and Practice
QED: The Strange Theory of Light and Matter
The God Delusion

Selected Books
Title

Available Books
Title

Clean Code: A Handbook of Agile Software Craftsmanship

Distributed Systems: Concepts and Design ‘

Emotional Intelligence

Freakonomics: A Rogue Economist Explores the Hidden
Side of Everything

Influence: Science and Practice
QED: The Strange Theory of Light and Matter
The God Delusion -

Selected Books
Title

Clean Code: A Handbook of Agile Software Craftsmanship

Distributed Systems: Concepts and Design

Riak: Data Distribution

160
/a single vnode/partition
a ring with 32 partitions “‘2'60/4 e
\ hash(<<"artist">>,<<"REM">>)
t
2 | 60/2

Key space is divided into partitions (vnodes) and forms a "ring".
Partitions are distributed over Riak nodes.
There are 32 partitions and 4 nodes in the example above

Riak: Data Replication

put(<<"artist">>,<<"REM">>)

(N=3)

Each object is replicated to N vnodes (by default N = 3).

When a given node is unavailable then an object is saved
to next available node (a fallback node). This is called a

"hinted hand-off".

CAP Theorem

Consistency
C Availability
N Partition Tolerance

P | A

® \Ve have to give up one of the properties: C, A or P

® Father of the CAP Theorem: Dr. Eric Brewer, Basho
board member

CAP In Riak

e Availablility and Partition Tolerance
guaranteed
e Eventually consistent
e Tunable consistency
e Strong consistency can be easily achieved:
R+W>N

N - number of replicas
R - how many replicas are used for reading
W - how many replicas are used for writing

Vector Clocks in Riak

value: Siblings created
"Bob's value"
vclock: values:
Bob: 2 Concurrent updates "Bob's value"
Alice: 1 "Alice's value"
value: e vclock:
"Initial" Bob: 2
vclock: & ' Alice: 2
Bob:1 © '
Alice: 1
value: .
‘ "Alice's value" .-~
Teevelock:
Bob: 1
Alice: 2

e Concurrent operations: when we cannot order them
sequentially
e |n Riak: Bob = node1, Alice = node2

Sibling Resolution

values: value:
"Bob's value" "Bob's resolved value"”
“Alice's value” e vclock:

vclock: Bob: 3
Bob:2 . T Alice: 2

Alice: 2 .-~

® Siblings are detected while reading
Best general strategy to resolve siblings: merge

® Dedicated data types optimal for merging: Convergent
Replicated Data Types

More on Siblings

If we want to control concurrent operations with siblings
then we have to set allow_mult = true at the bucket level
(it is turned off by default).

Siblings are created when:

an update on an object is done in parallel

a stale vector clock is used during an update

a network partition occurs, object is updated in separate
partitions and network partitions reconnect

when we use a cluster-to-cluster replication

Riak: CAP Controls

CAP controls = query parameters

e r - (read quorum) how many replicas need to agree when retrieving the
object

e pr - (primary read quorum) how many replicas to commit to primary nodes
before returning a successful response

e W - (write quorum) how many replicas to write to before returning a
successful response

e dw - (durable write quorum) how many replicas to commit to durable
storage before returning a successful response

e pw - (primary write quorum) how many replicas to commit to primary
nodes before returning a successful response

e rw - how many replicas need to agree for both operations (get and put)
involved in deleting an object

Riak: Tunable Consistency

Possible values of CAP controls:

all - All replicas must reply
one - One replica myst reply

quorum - A majority of the replicas must reply (half plus
one)

default - uses per-bucket consistency property

an arbitrary integer value - not recommended since
all”, "one", "quorum”, "default" are enough

By default query parameters (r, w, ...) are set at the bucket
level to quorum which is a very reasonable value.

Querying with REST

Creating/updating an object with PUT:

curl -v -XPUT -H "Content-Type: application/json" -d '{"title": "The Prince","author": "Niccolo
Machiavelli"}' http://localhost:10018/riak/book/book1

book: the bucket
book1: the key

Querying an object with GET:

curl -v -XGET http://localhost:10018/riak/book/book1

Deleting an object with DELETE:

curl -v -XDELETE http://localhost:10018/riak/book/book1

Creating an object and generating they key with POST:

curl -v -XPOST -H "Content-Type: application/json" -d '{"title": "The Prince","author": "Niccolo
Machiavelli"}' http://localhost:10018/riak/book

Querying Buckets With REST

Listing buckets:
curl -v http://localhost:10018/buckets?buckets=true

Listing keys in a bucket:
curl -v http://localhost:10018/buckets/book/keys?keys=true

Querying bucket properties:
curl -v http://localhost:10018/riak/book

Updating bucket properties:

curl -v -XPUT -H "Content-Type: application/json" -d '{"props":{"allow_mult":
true}}' http://localhost:10018/riak/book

Property "allow_mult" is set true above.

Secondary Indexes (2i)

Objects are tagged with values stored as metadata

Two types of secondary attributes: integers and strings
Querying by exact match or range on one index

Query results can be used as input to a MapReduce query

Storing tags:

curl -v -XPUT -H "x-riak-index-email_bin: sidorykp@gmail.com" \

-H "x-riak-index-age_int: 39"\

-H "Content-Type: application/json" \

-d {"firstName": "Pawel","lastName": "Sidoryk"}' http://localhost:10018/riak/user/user1

Querying by tag value:
curl -v http://localhost:10018/buckets/user/index/email_bin/sidorykp@gmail.com

Querying by a range of values:
curl -v http://localhost:10018/buckets/user/index/age_int/18/100

MapReduce in Riak

Map phase operates on single objects, generates a list of
values. Map phase is used to filter and extract data from
single objects. A variable length list of values can be
produced from a single object

Reduce phase takes a list of values from the Map phase
and aggregates them. Reduce can count values, group
values, sort values.

MapReduce: Counting Objects

curl -XPOST http://localhost:10018/mapred \
-H 'Content-Type: application/json'\

-d @-\
<<EOF
{
"inputs":"book",
"query™:[{
"map":{
"language”:"javascript",
"source":"function(riakObiject) {
return [1];
}ll
o
"reduce":{
"language":"javascript",
"source":"function(values, arg){
return [values.reduce(function(acc, item){ return acc + item; }, 0)];
}II
}
1
}

EOF

MapReduce: Map inputs

e Can be all objects in a bucket: "inputs":"book"
e Can be objects in a bucket filtered by a key:

"inputs”; {
"bucket":"book",
"key_filters":[["string_to_int"],["greater_than", 5]]
}
e Can be a bucket filtered by index
"inputs": {
"bucket":"user",
"index":"age _int",
"start":"18",
"end":"100"

e Can be a full text search result

MapReduce: continued

We can have just Map without Reduce

Map and Reduce phases can be chained, e.g.:
map -> reduce1 -> reduce?2
filter input (map)-> group by (reduce) -> order by (reduce)

Erlang and JavaScript functions can be used for Map and
Reduce.

Extracting a member variable in Map is easy:
"source":"function(riakObject) {

var m = Riak.mapValuesJson(riakObject)[0];
return [m.firstName];

Riak Search

Distributed, full-text search engine

Objects are indexed in a precommit hook

Text extraction based on a mime type

Can feed data into MapReduce

Query syntax the same as in Lucene, most of Lucene
operators are supported

Examples:
bin/search-cmd search book "author:Robert"

curl http://localhost:10018/solr/book/select?qg=author:Robert

Riak Search: Weaknesses

e Uses timestamps, rather than vector clocks

e Does not use quorum values when writing
(indexing) data and reading (querying) data

e Has no read-repair mechanism. If Search
Index data is lost, the entire data set must be
re-indexed

Riak developers are working on a next-
generation full text search engine: Yokozuna.

Java Client: Objects (POJOS)

public class Book {
@RiakKey
private String id;
@RiakVClock
private byte[] vclockBytes;
private String title;
@Riakindex(name = "created by user _id_bin")
private String createdByUser;

}
@RiakKey: Riak ID of an object

@RiakVClock: a serialized Riak VClock (we do not touch it)

@Riakindex: member variable "createdByUser" stores index values. The
index name is "created by user id_bin"

Java Client: Buckets

Creating a bucket (with "allow_mult = true"):
Bucket bucket = riakClient.createBucket("book").allowSiblings(true).execute();

Fetching a bucket:
Bucket bucket = riakClient.fetchBucket("book").execute();

Listing keys in a bucket:
for (String key: bucket.keys()) {...}

Java Client: Objects

Storing a POJO:
Book book = new Book(id);
bucket.store(book).execute();

Fetching a POJO by a key:

bucket.fetch(id, Book.class).execute();

Specifying CAP controls:
bucket.fetch(id, Book.class).r(Quora.QUORUM).execute();

Fetching with the use of a Conflict Resolver:
BookConflictResolver cr = new BookConflictResolver();
bucket.fetch(id, Book.class).withResolver(cr).execute();

Java Client: Conflict Resolver

e The task of a Conflict Resolver is to merge
siblings into one object

e Conflict Resolvers work on a client

e A Conflict Resolver must be defined for each
class for which siblings may be produced

e A Conflict Resolver is active during reading
objects

e Using dedicated data types (CRDT-s) is
recommended for the merge to make sense

Conflict Resolver: Shopping Cart

public ShoppingCart resolve(Collection<ShoppingCart> siblings) {
ShoppingCart shoppingCartM = null;
for (ShoppingCart shoppingCart: siblings) {
if (shoppingCartM == null) {
shoppingCartM = shoppingCart;
} else {
Set<BookUidPair> addSet = shoppingCartM.getAddSet();
Set<BookUidPair> addSetToMerge = shoppingCart.getAddSet();
addSet.addAll(addSetToMerge);

Set<BookUidPair> removeSet = shoppingCartM.getRemoveSet();
Set<BookUidPair> removeSetToMerge = shoppingCart.getRemoveSet();
removeSet.addAll(removeSetToMerge);

}
return shoppingCartM,;

Java Client: Indexes

Returning object keys with exact match on index
"email_bin":

List<String> userKeys = bucket.fetchindex(Binlndex.named("email_bin")).
withValue("sidorykp@gmail.com").execute();

Range query on index "age_int", index is used as an input
filter to MapReduce, MapReduce must be used to return
whole objects instead of just their keys:

IndexQuery indexQuery = new IntRangeQuery(Intindex.named("age _int"),
"person”, 18, 100);

MapReduceResult result = riakClient.mapReduce(indexQuery).addMapPhase
(mapFunction).execute();

Java Client: MapReduce

Example: returning all objects in a bucket "book":

Function map = new JSSourceFunction(
"function(riakObject) {" +
"var m = Riak.mapValuesJson(riakObject)[0];" +
"return [m];" +

")

MapReduceResult result = riakClient. mapReduce("book").addMapPhase(map).
execute();

Convergent Replicated Data Types

Eventually consistent replicas easily converge when we use data types for
which we define a merge function that is:

e commutative
e associative
e idempotent

Such data types are called Convergent Replicated Data Types (CRDT-s).

The simplest example: grow-only set (a set that supports "add" and does not
support "remove"). The "merge"” function is implemented by union of sets.

Important CRDT-s:

e vector clock

e distributed counter

e observed-remove set (OR-Set), good for a distributed shopping cart
e multi-value register

e Treedoc, good for cooperative document editing

CRDT example: OR-Set

Consists of 2 sets: "add set" and "remove set". "Add set" and "remove set"
contain pairs {elem, uid} where "elem" is the actual element being stored in the
OR-Set and "uid" is a unique identifier allocated during an "add" operation.

We remove an "elem" from an OR-Set by adding all {elem, uid1}, {elem, uid2}
etc. pairs found in the "add set" to the "remove set".

Merging OR-Sets is easy: we make a union of "add sets" to get a merged "add
set" and we make a union of "remove sets" to get a merged "remove set".

e adding "book1":
o add set: [{"book1", uid1}], remove set: []
e removing "book1:"
o add set [{"book1", uid1}], remove set: [{"book1", uid1}]
e adding "book1" once more:
o add set [{"book1", uid1}, {"book1", uid2}], remove set: [{"book1", uid1}]

CRDT-s: continued

Riak developers are working on implementation of a library
of CRTD-s straight in Riak. Currently one has to implement
his/lher own CRDT-s on top of Riak.

Some data operations cannot be implemented by a CRDT,
e.g. a non-negative counter. Some data operations require
a global synchronization and they cannot be implemented
In a eventually-consistent manner.

Riak: Strengths

e Efficient concurrency control with vector

clocks

High scalability

Fault tolerance

Tunable consistency

Efficient query options: secondary indexes,

MapReduce, Riak Search

e Many client interfaces: Java, Python, Ruby
etc.

e Supports REST and Protocol Buffers

Riak: Weaknesses

No security: you must implement your own
security layer

Secondary Indexes do not scale well beyond
> 512 nodes

Failed MapReduce jobs are not restarted
(rather use Hadoop for long running
MapReduce jobs)

No high level query language

Various weaknesses of Riak Search

Conclusions

e Don't be afraid of eventual consistency

e Consider Riak if you want a complete data
solution for the Cloud or Big Data

e Scale your applications at ease

Further Reading

e basho.com

e Eventually Consistent - Revisited: www.
allthingsdistributed.com/2008/12/eventually consistent.
html

e M. Shapiro et al. A comprehensive study of
convergent and commutative replicated data types.
Technical Report RR-7506, INRIA, 2011.

e Nuno Preguica et a. A commutative replicated data
type for cooperative editing. Int. Conf. on Distributed
Computing Systems (ICDCS), 2009.

Contact me: sidorykp@gmail.com

Questions ?

e

