

Raspberry PI Cluster running Riak

● 4 nodes running Riak, fully operational
● Energy efficient: max 3.5 watts per node
● Based on the ARM architecture
● Very cheap
● Not a production grade cluster :-)

The Agenda
1. Riak: basic facts, main features
2. Objects and buckets
3. A demo: a classic distributed shopping cart
4. Data distribution
5. CAP theorem
6. Concurrency control: vector clocks, siblings
7. Tunable consistency
8. Operations on Riak with REST
9. Secondary Indexes (2i)

10. MapReduce in Riak
11. Riak Search
12. Riak Java Client
13. Conflict resolution with Java
14. Convergent Replicated Data Types
15. Wrap-up
16. Questions

Riak: Basic Facts

● A distributed key-value NoSQL database
● Based on Amazon Dynamo
● Fault tolerant
● No single point of failure
● Peer-to-peer architecture
● Easily scalable
● Highly available
● Eventually consistent (tunable consistency)
● Written in Erlang with elements in C and

JavaScript

Riak: main features

● Data distribution and replication
● Interfaces: REST-ful API, Protocol Buffers
● Client libraries: Java, Python, Perl, Erlang,

Ruby, PHP, .NET
● MapReduce
● Riak Search (full text search)
● Secondary Indexes

Objects in Riak
Riak stores values as opaque binary objects.

The most convenient way of storing objects: JSON-
encoded objects, e.g. we have a "book" object:

{
 "title": "The Prince",
 "author": "Niccolo Machiavelli"
}

Objects are grouped into buckets. Objects in a bucket
share replication level, consistency parameters, storage
backend. Objects in a bucket do not have to be related to
themselves in any other way.

Demo: Distributed Shopping Cart

Riak: Data Distribution

Key space is divided into partitions (vnodes) and forms a "ring".
Partitions are distributed over Riak nodes.
There are 32 partitions and 4 nodes in the example above

Riak: Data Replication

Each object is replicated to N vnodes (by default N = 3).

When a given node is unavailable then an object is saved
to next available node (a fallback node). This is called a
"hinted hand-off".

CAP Theorem

● We have to give up one of the properties: C, A or P
● Father of the CAP Theorem: Dr. Eric Brewer, Basho

board member

Consistency
Availability
Partition Tolerance

CAP in Riak

● Availability and Partition Tolerance
guaranteed

● Eventually consistent
● Tunable consistency
● Strong consistency can be easily achieved:

R + W > N
N - number of replicas
R - how many replicas are used for reading
W - how many replicas are used for writing

Vector Clocks in Riak

● Concurrent operations: when we cannot order them
sequentially

● In Riak: Bob = node1, Alice = node2

Sibling Resolution

● Siblings are detected while reading
● Best general strategy to resolve siblings: merge
● Dedicated data types optimal for merging: Convergent

Replicated Data Types

More on Siblings

If we want to control concurrent operations with siblings
then we have to set allow_mult = true at the bucket level
(it is turned off by default).

Siblings are created when:
● an update on an object is done in parallel
● a stale vector clock is used during an update
● a network partition occurs, object is updated in separate

partitions and network partitions reconnect
● when we use a cluster-to-cluster replication

Riak: CAP Controls

CAP controls = query parameters

● r - (read quorum) how many replicas need to agree when retrieving the
object

● pr - (primary read quorum) how many replicas to commit to primary nodes
before returning a successful response

● w - (write quorum) how many replicas to write to before returning a
successful response

● dw - (durable write quorum) how many replicas to commit to durable
storage before returning a successful response

● pw - (primary write quorum) how many replicas to commit to primary
nodes before returning a successful response

● rw - how many replicas need to agree for both operations (get and put)
involved in deleting an object

Riak: Tunable Consistency

Possible values of CAP controls:
● all - All replicas must reply
● one - One replica myst reply
● quorum - A majority of the replicas must reply (half plus

one)
● default - uses per-bucket consistency property
● an arbitrary integer value - not recommended since

"all", "one", "quorum", "default" are enough

By default query parameters (r, w, ...) are set at the bucket
level to quorum which is a very reasonable value.

Querying with REST
Creating/updating an object with PUT:
curl -v -XPUT -H "Content-Type: application/json" -d '{"title": "The Prince","author": "Niccolo
Machiavelli"}' http://localhost:10018/riak/book/book1

book: the bucket
book1: the key

Querying an object with GET:
curl -v -XGET http://localhost:10018/riak/book/book1

Deleting an object with DELETE:
curl -v -XDELETE http://localhost:10018/riak/book/book1

Creating an object and generating they key with POST:
curl -v -XPOST -H "Content-Type: application/json" -d '{"title": "The Prince","author": "Niccolo
Machiavelli"}' http://localhost:10018/riak/book

Querying Buckets With REST
Listing buckets:
curl -v http://localhost:10018/buckets?buckets=true

Listing keys in a bucket:
curl -v http://localhost:10018/buckets/book/keys?keys=true

Querying bucket properties:
curl -v http://localhost:10018/riak/book

Updating bucket properties:
curl -v -XPUT -H "Content-Type: application/json" -d '{"props":{"allow_mult":
true}}' http://localhost:10018/riak/book

Property "allow_mult" is set true above.

Secondary Indexes (2i)
● Objects are tagged with values stored as metadata
● Two types of secondary attributes: integers and strings
● Querying by exact match or range on one index
● Query results can be used as input to a MapReduce query

Storing tags:
curl -v -XPUT -H "x-riak-index-email_bin: sidorykp@gmail.com" \
 -H "x-riak-index-age_int: 39" \
 -H "Content-Type: application/json" \
 -d '{"firstName": "Pawel","lastName": "Sidoryk"}' http://localhost:10018/riak/user/user1

Querying by tag value:
curl -v http://localhost:10018/buckets/user/index/email_bin/sidorykp@gmail.com

Querying by a range of values:
curl -v http://localhost:10018/buckets/user/index/age_int/18/100

MapReduce in Riak

Map phase operates on single objects, generates a list of
values. Map phase is used to filter and extract data from
single objects. A variable length list of values can be
produced from a single object

Reduce phase takes a list of values from the Map phase
and aggregates them. Reduce can count values, group
values, sort values.

MapReduce: Counting Objects
curl -XPOST http://localhost:10018/mapred \
-H 'Content-Type: application/json' \
-d @- \
<<EOF
{
"inputs":"book",
"query":[{

"map":{
"language":"javascript",
"source":"function(riakObject) {

return [1];
}"

}},{
"reduce":{

"language":"javascript",
"source":"function(values, arg){

return [values.reduce(function(acc, item){ return acc + item; }, 0)];
}"

}
}]
}
EOF

MapReduce: Map inputs
● Can be all objects in a bucket: "inputs":"book"
● Can be objects in a bucket filtered by a key:

"inputs": {
"bucket":"book",
"key_filters":[["string_to_int"],["greater_than", 5]]

}
● Can be a bucket filtered by index

"inputs": {
"bucket":"user",
"index":"age_int",
"start":"18",
"end":"100"

}
● Can be a full text search result

MapReduce: continued
We can have just Map without Reduce

Map and Reduce phases can be chained, e.g.:
map -> reduce1 -> reduce2
filter input (map)-> group by (reduce) -> order by (reduce)

Erlang and JavaScript functions can be used for Map and
Reduce.

Extracting a member variable in Map is easy:
"source":"function(riakObject) {

var m = Riak.mapValuesJson(riakObject)[0];
return [m.firstName];

}"

Riak Search

● Distributed, full-text search engine
● Objects are indexed in a precommit hook
● Text extraction based on a mime type
● Can feed data into MapReduce
● Query syntax the same as in Lucene, most of Lucene

operators are supported

Examples:

bin/search-cmd search book "author:Robert"

curl http://localhost:10018/solr/book/select?q=author:Robert

Riak Search: Weaknesses

● Uses timestamps, rather than vector clocks
● Does not use quorum values when writing

(indexing) data and reading (querying) data
● Has no read-repair mechanism. If Search

index data is lost, the entire data set must be
re-indexed

Riak developers are working on a next-
generation full text search engine: Yokozuna.

Java Client: Objects (POJOS)
public class Book {
 @RiakKey
 private String id;
 @RiakVClock
 private byte[] vclockBytes;
 private String title;
 @RiakIndex(name = "created_by_user_id_bin")
 private String createdByUser;
}
@RiakKey: Riak ID of an object

@RiakVClock: a serialized Riak VClock (we do not touch it)

@RiakIndex: member variable "createdByUser" stores index values. The
index name is "created_by_user_id_bin"

Java Client: Buckets

Creating a bucket (with "allow_mult = true"):
Bucket bucket = riakClient.createBucket("book").allowSiblings(true).execute();

Fetching a bucket:
Bucket bucket = riakClient.fetchBucket("book").execute();

Listing keys in a bucket:
for (String key: bucket.keys()) {...}

Java Client: Objects
Storing a POJO:
Book book = new Book(id);
bucket.store(book).execute();

Fetching a POJO by a key:
bucket.fetch(id, Book.class).execute();

Specifying CAP controls:
bucket.fetch(id, Book.class).r(Quora.QUORUM).execute();

Fetching with the use of a Conflict Resolver:
BookConflictResolver cr = new BookConflictResolver();
bucket.fetch(id, Book.class).withResolver(cr).execute();

Java Client: Conflict Resolver

● The task of a Conflict Resolver is to merge
siblings into one object

● Conflict Resolvers work on a client
● A Conflict Resolver must be defined for each

class for which siblings may be produced
● A Conflict Resolver is active during reading

objects
● Using dedicated data types (CRDT-s) is

recommended for the merge to make sense

Conflict Resolver: Shopping Cart
public ShoppingCart resolve(Collection<ShoppingCart> siblings) {
 ShoppingCart shoppingCartM = null;
 for (ShoppingCart shoppingCart: siblings) {
 if (shoppingCartM == null) {
 shoppingCartM = shoppingCart;
 } else {
 Set<BookUidPair> addSet = shoppingCartM.getAddSet();
 Set<BookUidPair> addSetToMerge = shoppingCart.getAddSet();
 addSet.addAll(addSetToMerge);

 Set<BookUidPair> removeSet = shoppingCartM.getRemoveSet();
 Set<BookUidPair> removeSetToMerge = shoppingCart.getRemoveSet();
 removeSet.addAll(removeSetToMerge);
 }
 }
 return shoppingCartM;
}

Java Client: Indexes

Returning object keys with exact match on index
"email_bin":

List<String> userKeys = bucket.fetchIndex(BinIndex.named("email_bin")).
withValue("sidorykp@gmail.com").execute();

Range query on index "age_int", index is used as an input
filter to MapReduce, MapReduce must be used to return
whole objects instead of just their keys:

IndexQuery indexQuery = new IntRangeQuery(IntIndex.named("age_int"),
"person", 18, 100);
MapReduceResult result = riakClient.mapReduce(indexQuery).addMapPhase
(mapFunction).execute();

Java Client: MapReduce

Example: returning all objects in a bucket "book":

Function map = new JSSourceFunction(
"function(riakObject) {" +

"var m = Riak.mapValuesJson(riakObject)[0];" +
"return [m];" +

"}");

MapReduceResult result = riakClient.mapReduce("book").addMapPhase(map).
execute();

Convergent Replicated Data Types
Eventually consistent replicas easily converge when we use data types for
which we define a merge function that is:
● commutative
● associative
● idempotent

Such data types are called Convergent Replicated Data Types (CRDT-s).

The simplest example: grow-only set (a set that supports "add" and does not
support "remove"). The "merge" function is implemented by union of sets.

Important CRDT-s:
● vector clock
● distributed counter
● observed-remove set (OR-Set), good for a distributed shopping cart
● multi-value register
● Treedoc, good for cooperative document editing

CRDT example: OR-Set
Consists of 2 sets: "add set" and "remove set". "Add set" and "remove set"
contain pairs {elem, uid} where "elem" is the actual element being stored in the
OR-Set and "uid" is a unique identifier allocated during an "add" operation.

We remove an "elem" from an OR-Set by adding all {elem, uid1}, {elem, uid2}
etc. pairs found in the "add set" to the "remove set".

Merging OR-Sets is easy: we make a union of "add sets" to get a merged "add
set" and we make a union of "remove sets" to get a merged "remove set".
● adding "book1":

○ add set: [{"book1", uid1}], remove set: []
● removing "book1:"

○ add set [{"book1", uid1}], remove set: [{"book1", uid1}]
● adding "book1" once more:

○ add set [{"book1", uid1}, {"book1", uid2}], remove set: [{"book1", uid1}]

CRDT-s: continued

Riak developers are working on implementation of a library
of CRTD-s straight in Riak. Currently one has to implement
his/her own CRDT-s on top of Riak.

Some data operations cannot be implemented by a CRDT,
e.g. a non-negative counter. Some data operations require
a global synchronization and they cannot be implemented
in a eventually-consistent manner.

Riak: Strengths

● Efficient concurrency control with vector
clocks

● High scalability
● Fault tolerance
● Tunable consistency
● Efficient query options: secondary indexes,

MapReduce, Riak Search
● Many client interfaces: Java, Python, Ruby

etc.
● Supports REST and Protocol Buffers

Riak: Weaknesses

● No security: you must implement your own
security layer

● Secondary Indexes do not scale well beyond
> 512 nodes

● Failed MapReduce jobs are not restarted
(rather use Hadoop for long running
MapReduce jobs)

● No high level query language
● Various weaknesses of Riak Search

Conclusions

● Don't be afraid of eventual consistency
● Consider Riak if you want a complete data

solution for the Cloud or Big Data
● Scale your applications at ease

Further Reading

● basho.com
● Eventually Consistent - Revisited: www.

allthingsdistributed.com/2008/12/eventually_consistent.
html

● M. Shapiro et al. A comprehensive study of
convergent and commutative replicated data types.
Technical Report RR-7506, INRIA, 2011.

● Nuno Preguica et a. A commutative replicated data
type for cooperative editing. Int. Conf. on Distributed
Computing Systems (ICDCS), 2009.

Contact me: sidorykp@gmail.com

Questions ?

